
FEATURES

- Generates all clock frequencies for VIA K7 chip sets requiring multiple CPU clocks and high speed SDRAM buffers.
- Support one pair of differential CPU clocks, one open-drain CPU, 6 PCI and 13 high-speed SDRAM buffers for 3-DIMM applications.
- One 24 48MHz clock and one 48MHz clock.
- Two14.318MHz reference clocks.
- Power management control to stop CPU.
- Support 2-wire I2C serial bus interface with builtin Vendor ID. Device ID and Revision ID.
- Single byte micro-step linear Frequency Programming via I2C with Glitch free smooth switching.
- Built-in programmable watchdog timer up to 63 seconds with 1-second interval. It will generate a LOW reset output when timer expired.
- Spread Spectrum ±0.25% center spread, 0 to -0.5% down spread.
- 50% duty cycle with low jitter.
- Available in 300 mil 48 pin SSOP.

BLOCK DIAGRAM

PIN CONFIGURATION

Note: ^: Pull up, #: Active Low

*: Bi-directional latched at power-up

I/O MODE CONFIGURATION

MODE (Pin 7)	PIN 2
1 (OUTPUT)	REF0
0 (INPUT)	CPU_STOP

POWER GROUP

VDD0: PLL CORF

VDD1: REF(0:1), XIN, XOUT

VDD2: PCI(0:5)

VDD3: SDRAM(0:12)

VDD4: 48MHz, 24_48MHz

KEY SPECIFICATIONS

eth) com CPU Cycle to Cycle jitter: 250ps.

PCI to PCI output skew: 500ps.

CPU to CPU output skew: ±175ps

SDRAM to SDRAM output skew: 250ps.

CPU to PCI skew (CPU leads): 0 ~ 3 ns.

PIN DESCRIPTIONS

Name	Number	Туре	Description
VDD0	1	Р	Power supply for PLL CORE.
VDD1	6	Р	Power supply for REF0, REF1, and crystal oscillator.
VDD2	14	Р	Power supply for PCI (0:5).
VDD3	19,30,36,42	Р	Power supply for SDRAM (0:12).
VDD4	27	Р	Power supply for 24_48MHz and 48MHz.
GND	3,9,16,22, 33,39,45,47	Р	Ground.
XIN	4	I	14.318MHz crystal input that has internal loads cap (36pF) and feedback resistor from XOUT.
XOUT	5	0	14.318MHz crystal output. It has internal load cap (36pF).
REF0//CPU_STOP	2	В	Multiplexed pin controlled by MODE signal. When CPU_STOP is low, it will halt CPUT (0:1), CPUC0 and SDRAM (0:11) outputs. In output mode, this pin will generate buffered reference clock output.
PCI5/MODE	7	В	At power-up, MODE function will be activated. When MODE is Low, Pin 2 is input for CPU_STOP. When high, Pin 2 is output for REF0. After input data latched, this pin will generate PCI bus clock.
PCI0/FS3	8	В	At power-up, this pin is input pin and will determine CPU clock frequency. After input sampling, this pin will generate output clocks. FS3 has internal pull up (high by default).
PCI1/SEL24_48	10	В	At power-up, this pin will select 24MHz (when high) or 48MHz (when low) for pin25 output. After input sampling, this pin is PCI output. It has internal pull up resistor.
PCI(2:4)	11,12,13	0	PCI clock outputs.
SDRAMIN	15	I	Buffer input pin: The signal provided to this input pin is buffered to 13 SDRAM outputs.
SDRAM(0:11)	17,18,20,21, 28,29,31,32, 34,35,37,38	0	SDRAM clock outputs, Fan-out Buffer outputs from SDRAMIN pin.
SDATA	23	В	Carial data inpute for carial interface part
SCLK	24	I	Serial data inputs for serial interface port.
24_48MHz/FS1, 24MHz/FS0	25,26	В	At power-up, these pins are input pins and will determine the CPU clock frequency. FS0, FS1 have internal pull up (high by default).
SDRAM12	40	0	When CPU_STOP is low, this pin is still free running. When the power down is low, this SDRAM will be stopped.
PD/WDRESET	41	В	Power Down Control input. When low, Power Down will disable all clock outputs including internal VCO and crystal clock. The enable of the watchdog timer masks the PD action.
CPUT(0:1)	43,46	0	"True" clocks of differential pair open-drain CPU outputs.
CPUC0	44	0	"Complementary" clocks of differential pair open-drain CPU outputs.
REF1/FS2	48	В	Buffered reference clock output after input data latched during power-up.

POWER MANAGEMENT

CPU_STOP	CPUC0	CPUT (0:1)	SDRAM (0:11)	SDRAM12	CRYSTAL	VCO
0	Stopped Low	Stopped Low	Stopped Low	Running	Running	Running
1	Running	Running	Running	Running	Running	Running

FREQUENCY (MHz) SELECTION TABLE

I2C Byte0 Bit2	FS3	FS2	FS1	FS0	СРИ	PCI	Spread Spectrum Modulation
	0	0	0	0	124.0	41.3	±0.25%
	0	0	0	1	75.0	37.5	±0.25%
	0	0	1	0	83.3	41.7	±0.25%
	0	0	1	1	66.8	33.4	±0.25%
	0	1	0	0	103.0	34.3	±0.25%
	0	1	0	1	112.0	37.3	±0.25%
	0	1	1	0	133.3	44.4	±0.25%
0	0	1	1	1	100.0	33.3	±0.25%
default	1	0	0	0	120.0	40.0	±0.25%
	1	0	0	1	115.0	38.3	±0.25%
	1	0	1	0	110.0	36.7	±0.25%
	1	0	1	1	105.0	35.0	±0.25%
	1	1	0	0	140.0	35.0	±0.25%
	1	1	0	1	150.0	37.5	±0.25%
	1	1	1	0	124.0	31.0	±0.25%
	1	1	1	1	133.3	33.3	±0.25%
	0	0	0	0	90.0	30.0	±0.25%
	0	0	0	1	92.5	30.8	±0.25%
	0	0	1	0	95.0	31.7	±0.25%
	0	0	1	1	97.5	32.5	±0.25%
	0	1	0	0	101.5	33.8	±0.25%
	0	1	0	1	127.0	42.3	±0.25%
	0	1	1	0	136.5	34.1	±0.25%
1	0	1	1	1	100.0	33.3	0 to -0.5%
' [1	0	0	0	120.0	40.0	0 to -0.5%
	1	0	0	1	117.5	39.2	±0.25%
	1	0	1	0	122.0	40.7	±0.25%
	1	0	1	1	107.5	35.8	±0.25%
	1	1	0	0	145.0	36.3	±0.25%
	1	1	0	1	155.0	38.7	±0.25%
[1	1	1	0	130.0	32.5	±0.25%
	1	1	1	1	133.3	33.3	0 to -0.5%

12C BUS CONFIGURATION SETTING

Addrass Assignment	A6	A 5	A4	А3	A2	A1	A0	R/W
Address Assignment	1	1	0	1	0	0	1	_
Slave Receiver/Transmitter	Provid	Provides both slave write and readback functionality						
Data Transfer Rate	Stand	lard mode	at 100kbi	ts/s				
Serial Bits Reading	Byte (The serial bits will be read or sent by the clock driver in the following order Byte 0 – Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte 1 – Bits 7, 6, 5, 4, 3, 2, 1, 0 - Byte N – Bits 7, 6, 5, 4, 3, 2, 1, 0						
Data Protocol	This serial protocol is designed to allow both blocks write and read from the controller. The bytes must be accessed in sequential order from lowest to highest byte. Each byte transferred must be followed by 1 acknowledge bit. A byte transferred without acknowledged bit will terminate the transfer. The write or read block both begins with the master sending a slave address and a write condition (0xD2) or a read condition (0xD3). Following the acknowledge of this address byte, in Write Mode: the Command Byte and Byte Count Byte must be sent by the master but ignored by the slave, in Read Mode: the Byte Count Byte will be read by the master then all other Data Byte. Byte Count Byte default at power-up is = (0x09).							

12C CONTROL REGISTERS

1. BYTE 0: Functional and Frequency Select Clock Register (1=Enable, 0=Disable)

Bit	Pin#	Default	Description
Bit 7	8	0	FS3 (see Frequency selection Table)
Bit 6	48	1	FS2 (see Frequency selection Table)
Bit 5	25	0	FS1 (see Frequency selection Table)
Bit 4	26	0	FS0 (see Frequency selection Table)
Bit 3	-	0	Frequency selection control bit 1=Via I2C, 0=Via External jumper
Bit 2	-	0	FS4 (see Frequency selection Table)
Bit 1	-	1	0=Normal 1=Spread Spectrum enable
Bit 0	-	0	0=Normal 1=Tristate Mode for all outputs

2. BYTE 1: CPU Clock Register (1=Enable, 0=Disable)

Bit	Pin#	Default	Description
Bit 7	-	1	Reserved
Bit 6	-	1	Reserved
Bit 5	-	1	Reserved
Bit 4	-	1	Reserved
Bit 3	40	1	SDRAM12 (Active/Inactive)
Bit 2	-	1	Reserved
Bit 1	43,44	1	CPUT0, CPUC0 (Active/Inactive)
Bit 0	46	1	CPUT1 (Active/Inactive)

3. BYTE 2: PCI Clock Register (1=Enable, 0=Disable)

Bit	Pin#	Default	Description
Bit 7	-	1	Reserved
Bit 6	7	1	PCI5 (Active/Inactive)
Bit 5	-	1	Reserved
Bit 4	13	1	PCI4 (Active/Inactive)
Bit 3	12	1	PCI3 (Active/Inactive)
Bit 2	11	1	PCI2 (Active/Inactive)
Bit 1	10	1	PCI1 (Active/Inactive)
Bit 0	8	1	PCI0 (Active/Inactive)

4. BYTE 3: SDRAM Clock Register (1=Enable, 0=Disable)

Bit	Pin#	Default	Description
Bit 7	-	1	Reserved
Bit 6	-	1	Reserved
Bit 5	26	1	48MHz (Active/Inactive)
Bit 4	25	1	24_48MHz (Active/Inactive)
Bit 3	17	1	SDRAM11 (Active/Inactive)
Bit 2	18	1	SDRAM10 (Active/Inactive)
Bit 1	20	1	SDRAM9 (Active/Inactive)
Bit 0	21	1	SDRAM8 (Active/Inactive)

5. BYTE 4: SDRAM Clock Register (1=Enable, 0=Disable)

Bit	Pin#	Default	Description
Bit 7	28	1	SDRAM7 (Active/Inactive)
Bit 6	29	1	SDRAM6 (Active/Inactive)
Bit 5	31	1	SDRAM5 (Active/Inactive)
Bit 4	32	1	SDRAM4 (Active/Inactive)
Bit 3	34	1	SDRAM3 (Active/Inactive)
Bit 2	35	1	SDRAM2 (Active/Inactive)
Bit 1	37	1	SDRAM1 (Active/Inactive)
Bit 0	38	1	SDRAM0 (Active/Inactive)

6. BYTE 5: Peripheral Clock Register (1=Enable, 0=Disable)

Bit	Pin#	Default	Description
Bit 7	-	Χ	Inverted Power-up latched FS3 value (Read only)
Bit 6	-	Χ	Inverted Power-up latched FS2 value (Read only)
Bit 5	-	Χ	Inverted Power-up latched FS1 value (Read only)
Bit 4	-	X	Inverted Power-up latched FS0 value (Read only)
Bit 3	-	1	Reserved
Bit 2	-	X	Inverted Power-up latched SEL24_48MHz value (Read only)
Bit 1	48	1	REF1 (Active/Inactive)
Bit 0	2	1	REF0 (Active/Inactive)

7. BYTE 6: Fall-Back Frequency / Revision / Vendor ID Register (1=Enable, 0=Disable)

Bit	Pin#	Default	Description	
Bit 7	-	0	WDT Fall-back Frequency selection for FS4	Revision ID Bit 3*
Bit 6	-	0	WDT Fall-back Frequency selection for FS3	Revision ID Bit 2*
Bit 5	-	0	WDT Fall-back Frequency selection for FS2	Revision ID Bit 1*
Bit 4	-	0	WDT Fall-back Frequency selection for FS1	Revision ID Bit 0*
Bit 3	-	0	WDT Fall-back Frequency selection for FS0	Vendor ID Bit 3*
Bit 2	-	0	Vendor ID Bit 2*	
Bit 1	-	1	Vendor ID Bit 1*	
Bit 0	-	1	Vendor ID Bit 0*	

Note: *: Default value at power-up

8. BYTE 7: Linear Programming (M) Register (1=Enable, 0=Disable)

Bit	Pin#	Default	Description
Bit 7	-	0*	Linear programming sign bit (0 is "+", 1 is "-")
Bit 6	-	0*	Linear programming magnitude bit 6 (MSB)
Bit 5	-	0*	Linear programming magnitude bit 5
Bit 4	-	0*	Linear programming magnitude bit 4
Bit 3	-	0*	Linear programming magnitude bit 3
Bit 2	-	0*	Linear programming magnitude bit 2
Bit 1	-	0*	Linear programming magnitude bit 1
Bit 0	-	0*	Linear programming magnitude bit 0 (LSB)

Note: This register will be initialized to 0 following WATCHDOG RESET.

9. BYTE 8: WATCHDOG TIMER / Device ID Register (1=Enable, 0=Disable)

Bit	Pin#	Default	Description				
Bit 7	-	0	Watchdog Timer Enable Bit. 1=Enable, 0=Disable				
Bit 6	-	0	Device ID Bit 6*				
Bit 5	-	0	Watchdog Time Interval Bit 5 (MSB)	Device ID Bit 5*			
Bit 4	-	0	Watchdog Time Interval Bit 4	Device ID Bit 4*			
Bit 3	-	0	Watchdog Time Interval Bit 3	Device ID Bit 3*			
Bit 2	-	0	Watchdog Time Interval Bit 2	Device ID Bit 2*			
Bit 1	-	1	Watchdog Time Interval Bit 1 Device ID Bit 1*				
Bit 0	-	1	Watchdog Time Interval Bit 0 (LSB)	Device ID Bit 0*			

Note: *: Default value at power-up

PROGRAMMING OF CPU FREQUENCY

To simplify traditional loop counter setting, the PLL205-11 device incorporates SMART-BYTE ™ technology with a single byte programming via I2C to better optimize clock jitter and spread spectrum performance. Detail of PLL205-11's dual mode frequency programming method is described below:

1. ROM-table Frequency Programming:

The pre-defined 32 frequencies found in Frequency table can be accessed either through 5 external jumpers or by setting internal I2C register in BYTE0.

2. Micro-step Linear Frequency Programming:

CPU Frequency can be programmed via I2C in fine and linear positive or negative stepping around selected CPU frequency in Frequency table. The highest step is either +127 or -127. Other bus frequencies will be changed proportionally with the rate that CPU frequency change. The formula is as follow:

$$F_{CPU} = F_{CPU.ROM-Table} \pm \alpha (=0.22)^* M$$

Where:

- 1. M is magnitude factor defined in I2C Byte 7.bit(0:6)
- 2. \pm (sign bit) of M is defined in I2C Byte7.bit 7
- 3. α is a constant

 $\alpha = 0.22$

FREQUENCY PROGRAMMING EXAMPLE:

1. Procedures to program target CPU frequency to 139.0 Mhz:

- A. Locate the closest CPU frequency from Frequency-ROM table: 136.5
- B. $\alpha = 0.22$
- C. Solve M (Linear Magnitude factor) in integer:

$$M = (F_{CPU} - F_{CPU-ROMTABLE}) / \alpha$$

= (139 - 136.5) / 0.22
= 11

D. Program I2C register:

$$F_{CPU} = 136.5 + (0.22) * 11 = 138.92$$
 (% of frequency increased = 1.8 %) $F_{PCI} = 34.1 * (1+1.8\%) = 34.7$

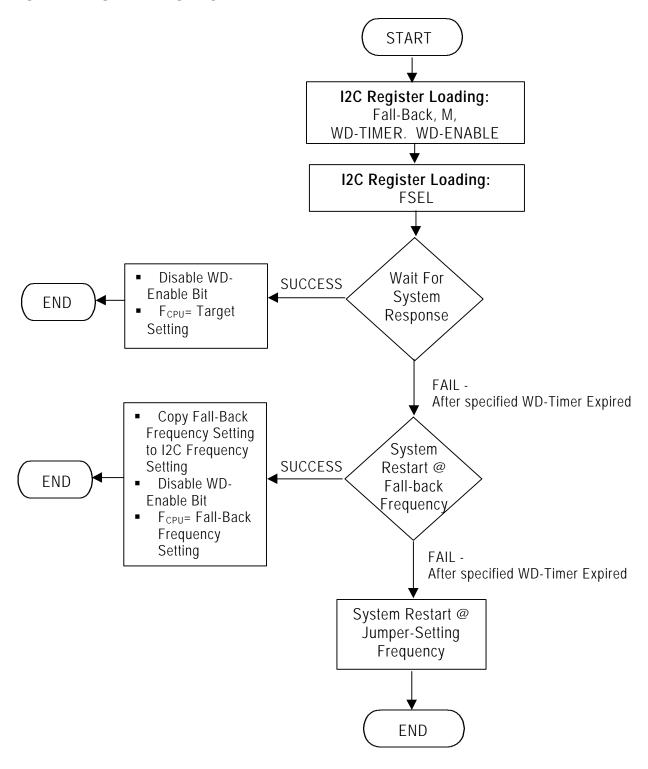
BUILT-IN WATCHDOG TIMER (WDT)

Watchdog timer is used to perform safe recovery if frequency switching causes system to enter into "Hang-up" state within a reasonable period of time (or Watchdog time interval). While disabled, the watchdog time interval can be programmed between 0 and 63 seconds with increment of 1 second by setting the value of I2C.Byte8.Bit(5:0). Once Enabled, WDT has to be disabled within a period that is shorter than the programmed watchdog interval; otherwise WDT will generate a 500ms low watchdog reset pulse to provoke a system reset. After system restarts, the PLL205-11 will start from predefined Fall-back Frequency (the value of I2C Byte6,bits(7:3)). If system for any reason fails again at Fall-back Frequency, the internal hardware will then generate a watchdog reset to restart the system from the value of external hardware jumper setting to ensure a safe recovery.

Example usage:

- 1. System power-up at CPU= 66.8MHz where external jumpers are used.
- 2A. Switch to target CPU=100.0MHz frequency with following I2C register setting:

_7	6	5	4	3	2	1	0	
0	0	1	1	1	0	0	0	FSEL Setting in I2C.BYTE0
FS3	FS2	FS1	FS0	CTR	FS4			
7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	M = 0 Setting in I2C.BYTE7
Sign	M6	M5	M4	М3	M2	M1	M0	
7	6	5	4	3	2	1	0	
1	0	0	0	1	1	1	1	WD-Timer = 15s Setting in I2C.BYTE8
ENB		T5	T4	Т3	T2	T1	T0	
7	6	5	4	3	2	1	0	
0	0	0	1	1	0	0	0	FBSEL Setting in I2C.BYTE6
FB4	FB3	FB2	FB1	FB0				


The fall-back frequency is set to the same location as that of FSEL since frequency switching between different timing groups will cause system to hang up. After WD timer expired or 15 seconds, the system will restart properly at target 100.0MHz if CPU is capable; otherwise WDT will perform another reset action to restart the system from 66.8 Mhz

2B. Switch to target CPU=78Mhz within the same timing Group

The fall-back frequency is recommended to set at the most safe and comfortable level to ensure a successful reboot such as 70 or 75.3 if system is unable to switch to 78Mhz.

WDT OPERATIONAL FLOW CHART

ELECTRICAL SPECIFICATIONS

1. Absolute Maximum Ratings

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage	V _{DD}	V _{SS} -0.5	7	V
Input Voltage, dc	VI	V _{SS} -0.5	V _{DD} +0.5	V
Output Voltage, dc	Vo	V _{SS} -0.5	V _{DD} +0.5	V
Storage Temperature	T _S	-65	150	°C
Ambient Operating Temperature	TA	0	70	°C
Junction Temperature	TJ		115	°C
ESD Voltage			2	KV

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

2. AC/DC Electrical Specifications

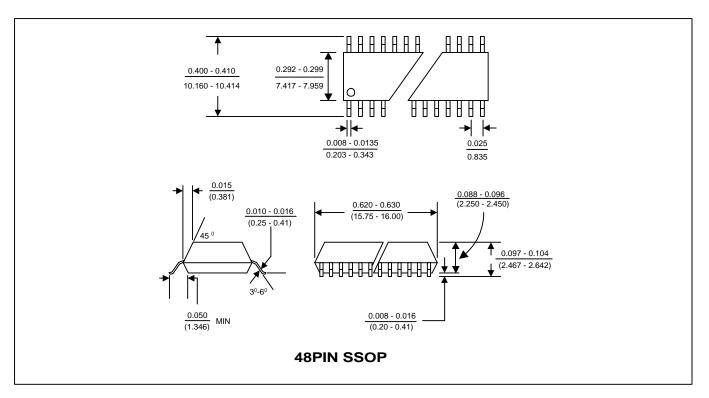
PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input High Voltage	V _{IH}		2.0		V _{DD} +0.3	V
Input Low Voltage	V _{IL}		V _{SS} -0.3		0.8	V
Input High Current	l _{IH}	VIN = VDD			5	uA
Input Low Current	I _{IL1}	Logic inputs without internal pull-up on SCLK, V _{IN} = 0V	-5			uA
Input Low Current	I _{IL2}	Logic inputs with internal pull-up resistors, V _{IN} = 0V	-200			uA
Power Down	PD				600	uA
Pull-up resistor	R_{pu}	Pin 2,7,8,10,25,26,48		120		Kohm
		C _L =0 pF @ 66MHz				
Operating Supply Current	I _{DD}	C _L =0 pF @ 100MHz	1		180	mA
		C _L =0 pF @ 133MHz				
Input frequency	Fı	$V_{DD} = 3.3V$	12	14.318	16	Mhz
Innut Congoitance	Cin	Logic Inputs			5	PF
Input Capacitance	CINX	XIN & XOUT pins	27		45	PF

2. Output Buffer Electrical Specifications

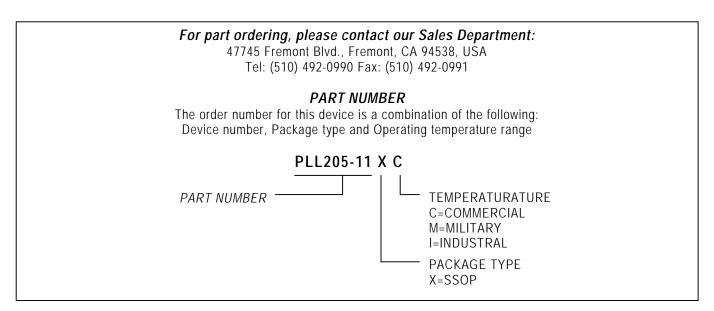
Unless otherwise stated, all power supplies = $3.3V\pm5\%$, and ambient temperature range $T_A=0$ °C to 70°C

PARAMETERS	SYMBOL	OUTPUTS	CONDITIONS	MIN.	TYP.	MAX ·	UNITS
Output Rise time	T	CPU (Open Drain)	Measured @ 0.3V ~ 1.2V, C _L =20pf, 3.3V±5%			0.9	
		REF(0:1)	Measured @ 0.4V ~ 2.4V, C _L =20pf, 3.3V±5%			4	ns
Output Nise time	T _{OR}	PCI(0:5)	Measured @ 0.4V ~ 2.4V, C _L =30pf, 3.3V±5%			2	113
		24_48MHz, 48MHz	Measured @ 0.4V ~ 2.4V, C _L =20pf, 3.3V±5%			4	
		CPU (Open Drain)	Measured @ 1.2V ~ 0.3V, C _L =20pf, 3.3V±5%			0.9	
Output Fall time	Тоғ	REF(0:1)	Measured @ 2.4V ~ 0.4V, C _L =20pf, 3.3V±5%			4	- ns
Output I all time		PCI(0:5)	Measured @ 2.4V ~ 0.4V, C _L =30pf, 3.3V±5%			2	
		24_48MHz, 48MHz	Measured @ 2.4V ~ 0.4V, C _L =20pf, 3.3V±5%		4	4	
Duty Cycle	Dτ	REF(0:1),CPU, PCI(0:5)	V _T = 50%	45		55	%
		24_48MHz, 48MHz	$V_T = 1.5V$				
	Tskew	CPU to CPU				200	- ps
Clask Chaw		PCI to PCI	V _T = 50%			200	
Clock Skew		CPU to PCI	V 1 - 3070	0		3	
		CPU to AGP	-500		500	ns	
	Zo	CPU	$V_O = V_X$		50		Ohm
		PCI(0:5)			30		
		REF(0:1)	V _{DD} =3.3V±5%		40		
		REF1	VDD=3.3VI370		40		
Output Fall time Duty Cycle Clock Skew Output Impedance		24_48MHz, 48MHz			40		

2. Output Buffer Electrical Specifications, continued


Unless otherwise stated, all power supplies = $3.3V\pm5\%$, and ambient temperature range T_A = $0^{\circ}C$ to $70^{\circ}C$

PARAMETERS	SYMBOL	OUTPUTS	CONDITIONS	MIN.	TYP.	MAX.	UNITS
	Гон	CPU					mA
		REF(0:1)				-22	
Output High Current		PCI(0:5)	V _{OH} = 2.0V			-16	
		24_48MHz				-22	
		48MHz				-22	
		CPU	V _{OL} = 0.4V	20			
		REF(0:1)		16			mA
Output Low Current	loL	PCI(0:5)	$V_{OL} = 0.8V$	19			
		24_48MHz	VOL = 0.0 V	16			
		48MHz		16			
Jitter, One Sigma	Jsigma	REF,48MHz,24MHz	V _T = 1.5V			0.5	ns
Jitter, Absolute		CPU	V _T = 50%	-250		250	ps
Jiller, Absolute	J_{Abs}	REF,48MHz,24MHz	$V_T = 1.5V$	-1	-22 -16 -22 -22	ns	
Jitter (cycle to cycle)		CPU	$V_T = V_X$			250	ps
Jiller (Cycle to Cycle)	Јсус-сус	PCI	Measured @ 1.5V			250	
AC Differential Voltage	VDIF			0.4			V
DC Differential Voltage	V _{DIF}	CPU (Open Drain)		0.2			V
Differential Crossover Voltage	V _X			550		1100	mV


Note: $V_{pullup} = 1.5V$ (external); V_{DIF} specifies the minimum input differential voltages (V_{TR} - V_{CP}) required for switching, where V_{TR} is the "true" input level and V_{CP} is the "complement" input level.

PACKAGE INFORMATION

ORDERING INFORMATION

PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by PhaseLink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: PhaseLink's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.